ABOUT

JEAN-PAUL AGON EDITO

AUDREY AZOULAY EDITO

COMMITMENT FOR SUB-SAHARAN AFRICAN WOMEN SCIENTISTS

FOR WOMEN IN SCIENCE 2018 ACHIEVEMENTS

THE 2019 LAUREATES

Professor Najat Aoun Saliba
Laureate for Africa and the Arab States

Professor Maki Kawai
Laureate for Asia-Pacific

Professor Claire Voisin
Laureate for Europe

Professor Karen Hallberg
Laureate for Latin America

Professor Ingrid Daubechies
Laureate for North America

THE 2019 INTERNATIONAL RISING TALENTS

A RIGOROUS SELECTION PROCESS
ABOUT THE

Fondation L’Oréal

The Fondation L’Oréal works to support women across the world, helping them to fulfil their potential in two major areas that sit at the heart of the Group’s DNA: scientific research and inclusive beauty.

Established in 1998 and managed by the Fondation L’Oréal in partnership with UNESCO, the For Women in Science programme seeks to improve the representation of women in scientific careers, strong in the conviction that the world needs science, and science needs women. Over the past 20 years, the programme has supported and raised the profile of more than 3,100 researchers from 117 countries.

Convinced that beauty is at the core of the process of reconstructing lives and an important element of social inclusion, the Fondation L’Oréal also develops outstanding free training in beauty professions for people from vulnerable backgrounds. The Fondation also provides access to beauty and wellness treatments in medical and social settings, supporting people undergoing physical, psychological or social suffering, as well as reconstructive surgery.

ABOUT UNESCO

Since its creation in 1945, UNESCO, the United Nations Educational Scientific and Cultural Organization, works to create the conditions for dialogue among civilizations, cultures and peoples, based upon respect for commonly shared values. UNESCO’s mission is to contribute to the building of peace, the eradication of poverty, sustainable development and intercultural dialogue through its unique competencies in education, the sciences, culture, communication and information. The Organization focuses, in particular, on two global priorities: Africa and Gender equality.

UNESCO is the only United Nations specialized agency with a specific mandate for Science, symbolized by the ‘S’ in the acronym. Through its natural sciences programmes, UNESCO contributes to the overall implementation of the United Nations Sustainable Development Goals by providing policy assistance to support developing countries in strengthening their scientific and technological capacity, and to help Member States design effective policies including local and indigenous knowledge systems. UNESCO is a driving force to advance scientific research and expertise in the developing world, and leads several intergovernmental programmes for the sustainable management of freshwater, ocean and terrestrial resources, for biodiversity protection, and to promote science’s role in combating climate change and in disaster risk reduction.

Together with its national and regional offices around the world, UNESCO supports international scientific cooperation and works with a wide range of partners at global, regional and national levels. By joining forces with its partners, UNESCO can leverage resources, expertise and competencies to promote all its ideals and values and to strengthen the visibility and impact of its action in all areas where the Organization has leadership, recognized expertise and comparative advantage.
The presence of women in public, political and economic spheres has progressed considerably over these last few years. Today, voices demanding real equality are increasingly making themselves heard, emanating just as much from major international figures as from anonymous activists. However, certain spheres still show too much resistance to this appeal, to this pressing need. This is particularly the case in the world of science.

Our desire to transform this situation was born of exactly this observation, more than 20 years ago. In 1998, L’Oréal created the For Women in Science programme, in partnership with one of the world’s greatest international institutions, UNESCO. Our common ambition was to give women the place they deserve in science. We set out to ensure that women are advancing the world. More than ever, we are convinced of this – women advance science, and science advances the world. In parallel, we will focus on territories with an alarming under-representation of women, areas of knowledge, as well as geographical regions.

For the first time this year, the international award has therefore opened its doors to two new disciplines: mathematics and computer science. In this way, two mathematicians figure among the five laureates of the 2019 award. Extending the award to these prestigious disciplines, these sources of innovation, is a symbolic decision, and above all, it is indispensable. This is particularly clear given that since the creation of three of the most prestigious international awards for mathematics (Fields, Wolf and Abel), there is just one woman among the 141 laureates honoured to date. In terms of computer science and new technologies, the conclusion is beyond dispute – women in these areas are rare, not only in senior roles but also in the early career stages. Now, recent studies have shown that the quality of research is suffering from the absence of women. This is true, for example, of artificial intelligence, which reproduces sexist stereotypes through its algorithms, and also for certain types of medical research, which have only been studied by and for men.

This is about addressing the root cause of the problem, giving women the place they should and can have in these invaluable domains, in the hyper-connected and technology-driven world in which we are evolving.

From a geographical perspective, we wanted to send a strong signal, launching specific initiatives on the African continent. There are simply not enough women scientists in Africa. And there are strong disparities between its countries. In the continent’s poorest countries, women scientists are real heroes who bravely overcome obstacles such as lack of funding or insufficient resources to conduct their work successfully. For all these reasons, in 2019, we have decided to divide our regional fellowship programme for Africa in two. One programme will be dedicated solely to South Africa, and the second to the other sub-Saharan African countries. We are also increasing the number of fellowships and funding available.

We will never give up. We will always work side by side with women and men scientists who are advancing the world. Men are fundamental to this effort. That is why our Men for Women in Science initiative, launched last year, on the occasion of the programme’s 20th anniversary, continues to expand. We now count 50 men scientists engaged by our side, in France but also in Japan and Morocco, helping to advance the cause of women in science within their prestigious research institutions in a very tangible way. Our shared fight with UNESCO for more inclusive, sustainable research is a tangible way. Our shared fight with UNESCO for more inclusive, sustainable research is a tangible way. Our shared fight with UNESCO for more inclusive, sustainable research is a tangible way. Our shared fight with UNESCO for more inclusive, sustainable research is a tangible way. Our shared fight with UNESCO for more inclusive, sustainable research is a tangible way.

Jean-Paul Agon
Chairman & Chief Executive Officer of L’Oréal
Chairman of the Foundation L’Oréal
In the world’s collective memory, Marie Curie is widely recognized today as a great woman of science. Marguerite Perey, Lisa Meitner and Ida Tacke, for their part, are known only to a few specialist groups. Yet humanity owes some of the greatest advances in chemistry of the twentieth century to these women; without them, and other female colleagues of theirs, scientific knowledge would have been deprived of one of its major instruments: the periodic table. In 2019, the General Assembly of the United Nations marks the International Year of the Periodic Table of Chemical Elements, whose 150th anniversary we celebrate, and to which these women contributed to completing through their discovery of radium, polonium, francium and rhenium, among other elements.

Science remains one of many areas often perceived worldwide as men’s work alone. These social representations conceal a significant part of the history of science; furthermore, by simply denying girls and women such female role models of scientific achievement, they also perpetuate gender inequality in the access to these fields of study and careers. Women currently make up only 30 per cent of the world’s scientific researchers. Since Marie Curie was awarded the Nobel Prize in 1903, women have been the recipients of just 3 per cent of scientific Nobel Prizes. UNESCO is wholly committed to addressing this major challenge for greater recognition and equal opportunities for girls and women to study and practice science.

The issue of women in science is at the heart of the partnership between UNESCO and the Fondation L’Oréal, which marks its twenty-first anniversary this year: it is an exceptional example of long-term collaboration, which seeks to acknowledge, encourage and support the work of new generations of women scientists. This year, for the first time, the L’ORÉAL-UNESCO Prize For Women in Science is also rewarding scientific excellence in mathematics and information technology. Combating inequalities right from the early stages of education is crucial. UNESCO is working to deconstruct gender stereotypes in school curricula and foster girls’ interest in science, technology, engineering and mathematics, which is often undermined. In addition, UNESCO is developing several projects and initiatives to promote women’s contributions to the production and dissemination of scientific knowledge.

This year, which marks the fiftieth anniversary of the Apollo 11 lunar landing, the centennial of the International Union of Pure and Applied Chemistry and the eightieth anniversary of the French National Centre for Scientific Research (CNRS), reminds us that science must be a collective endeavour and progress must be universal. Depriving science of half of humanity is tantamount to depriving ourselves of understanding the world, as well as depriving women and girls who wish to explore science of the joy of scientific discovery.

Audrey Azoulay
Director-General of the United Nations Educational, Scientific and Cultural Organization
directed by women. Insufficient funding and resources continue to present major barriers to scientific progress, particularly among the continent’s most vulnerable countries. And with few women scientists to act as role models or promote gender equality in the family and beyond, young girls may be discouraged from pursuing science at an early age. Indeed, balancing scientific research and family responsibilities is a challenge for women the world over, but particularly in Africa.

Since 2010, the Fondation L’Oréal and UNESCO have highlighted the achievements of 140 outstanding women scientists across Sub-Saharan Africa, including 11 laureates and 129 fellows, providing financial support to help these remarkable young women accelerate their work. At the 2018 Awards Ceremony in Nairobi, 14 young women scientists from Ghana, Mauritius, Kenya, South Africa and Nigeria were honoured. Our latest fellows are forging new ground in multiple STEM fields, covering everything from treating tuberculosis to building climate resilience among smallholder coffee farmers to preserving bee colonies and better understanding the chemical relationship between mosquitoes and humans. To strengthen our support we offered our fellows both a financial reward and the opportunity to participate in leadership training. We are dedicated to connecting scientific women throughout the continent.

Furthermore, since the majority of the applications are coming principally from South Africa and considering the importance of supporting African scientific research and our commitment to empowering more female scientists from across Sub-Saharan Africa, we decided to separate the initial Sub-Saharan Africa regional programme into two programmes:
- A new national fellowship programme for South Africa;
- The regional programme for the 48 other countries of the Sub-Saharan region.

Starting from this 10th edition, the L’Oréal-UNESCO For Women in Science Sub-Saharan Africa programme will support 20 young female scientists (15 doctorates and 5 post-doctorates) in Sub-Saharan Africa, at the exception of South Africa. Furthermore, 7 fellowships (5 doctorates and 2 post-doctorates) will be granted to South Africa, instead of 14 granted in total the previous years.

Through our partnership we will continue to expand on these efforts, helping African women scientists to achieve the recognition they deserve and lead the march towards a more inclusive and sustainable world.

Africa is a dynamic continent of astounding natural beauty and cultural diversity, with a growing young population and thriving entrepreneurial spirit. But African countries also face great challenges. As the African population reaches 1.3 billion by 2050, remote, rural communities will continue to be on the frontline of climate change. Many lack access to safe water, clean energy and vital healthcare. Women scientists must be empowered to participate fully and equally in harnessing science to address these challenges, making new discoveries that could transform lives and build a more resilient future. Today, there are simply not enough women scientists in Africa to drive change at the scale at which it is needed. Women make up just 31% of researchers in Sub-Saharan Africa. Elsewhere, in Kenya, only 75 of the 300 people who gain PhDs annually are women, of a national population of 48 million. In Tchad, only 5% of researchers are women, and in West Africa, only 8% of research laboratories are committed to African women scientists.

Helping African women scientists to achieve the recognition they deserve.

For Women in Science

2018 ACHIEVEMENTS

Women scientists are leading ground-breaking research across the world. But despite their remarkable discoveries, women still represent just 29% of researchers globally, and their work rarely gains the recognition it deserves. Only 3% of Nobel Prizes for science have ever been awarded to women, and only 11% of senior research roles are held by women in Europe. In 2018, two women won Nobel Prizes for physics and chemistry. Yet the conversation focused less on their scientific achievements and more on their gender. As the world hurries towards a future threatened by climate change and resource scarcity, the global scientific community must lose no time in recognising and promoting women scientists’ achievements.

The Fondation L’Oréal and UNESCO have worked together for more than 20 years to help empower more women scientists to achieve scientific excellence and participate equally in solving the great challenges facing humanity. Together we have celebrated more than 3,100 women scientists in 117 countries, and awarded 107 laureates, three of whom have gone on to win Nobel Prizes. But for women to truly flourish in science, excellence in research is just the first step. We know that leadership is vital to banishing the discrimination that too often prevents women from progressing. That’s why, in addition to vital funding and recognition, we offer our laureates and fellows the opportunity to build strong leadership skills, and network with fellow women scientists.

We encourage mentorship, collaboration and strong role models as key means to help more young women break the glass ceiling. And we promote the value of learning and education, reaching girls across France with structured scientific education programmes.

In 2018, the Men for Women in Science initiative was launched engaging more than 50 prominent men scientists from France through Japan to Morocco to join us in the fight to transform the statu quo and enable more women to become scientific leaders. These men will act as agents of change within their respective institutions, promoting gender equality and helping to ensure that women and men have equal opportunities to win funding, publish their works and advance their careers. These male champions have been invited to make specific, measurable commitments to support our aim, and we look forward to highlighting their contribution, as they help dismantle the barriers to women’s empowerment.

Today, as we celebrate the achievements of the 2019 For Women in Science laureates, we must remember that there is still much more to be done to achieve true gender equality in science. But we remain determined, and we are moving steadily towards making our vision a reality. One day, we will live in a world where girls are encouraged to study science, where women have adequate support to balance the responsibilities of research and motherhood, and where scientists are judged purely on the merit of their discoveries and the potential of their work to change the world.

UNESCO Science report toward 2030 (2015).
The 2019 laureates

5 outstanding female scientists

LAUREATE FOR AFRICA AND THE ARAB STATES
Professor Najat Aoun Saliba
Awarded for her pioneering work on the identification of carcinogens and other toxicants in air pollutants in the Middle East countries and waterpipe and emerging nicotine delivery devices.

LAUREATE FOR ASIA-PACIFIC
Professor Maki Kawai
Awarded for her seminal work on manipulating individual molecules at atomic scale to transform matter and create innovative materials.

LAUREATE FOR EUROPE
Professor Claire Voisin
Awarded for her outstanding work on algebraic geometry.

LAUREATE FOR LATIN AMERICA
Professor Karen Hallberg
Awarded for the development of state-of-the-art computational approaches to understanding the physics of quantum matter.

LAUREATE FOR NORTH AMERICA
Professor Ingrid Daubechies
Awarded for her outstanding contribution to digital images and signal processing, providing common and versatile algorithms for data compression.
Her innovative work in analytical and atmospheric chemistry will address the most pressing environmental challenges and push forward changes in health care policies and practices.

Air pollution is the single greatest environmental health risk globally, with the World Health Organization (WHO) estimating that one in eight deaths is caused by ambient or indoor air pollution.

L’Oréal-UNESCO Chemistry Laureate Pr Najat Aoun Saliba is conducting world-leading research on the chemical and toxic composition of polluted air, focusing on inhalable and atmospheric aerosols. She is a pioneer in assessing and understanding the transformations of ambient pollutants in Lebanon and the Middle East, and a recognised global expert in identifying toxic and carcinogenic substances emitted by combustible and non-combustible nicotine delivery systems such as hookahs and electronic cigarettes.

Importantly, Pr Saliba is active in raising awareness of her discoveries among government authorities, global health organisations and communities, and seeks to influence public health policy. She established the first database of major atmospheric pollutants in Lebanon, and demonstrated that open incineration of the country’s waste has multiplied the toxic content of air by a factor of 15.

She is propelled on by her desire to understand the essence of health and environmental risks at a molecular level. “It is the understanding of the nanoscopic picture of the molecular structure and mechanisms of reactions that allows us to see the macroscopic picture of the climate and environment”, she explains.

Growing up on her family’s banana farm in rural Lebanon, Pr Saliba shared her father’s profound connection to the earth. Later, when civil war prompted a move to the city, disrupting her studies, she was awoken to the disturbing realities of air pollution, as scandals surrounding dirty fuel imports hit Lebanon. She has also witnessed relatives, friends and colleagues developing health issues as a result of exposure to toxic substances in the environment.

Having always wanted to be a teacher, she taught in secondary schools for six years, before deepening her scientific knowledge by continuing her studies in analytical and atmospheric chemistry in the US.

Back in Lebanon, established an interdisciplinary environmental research team at the American University of Beirut. “Nothing deterred me from moving forward”, she says. “I was extremely focused on my work. I believed in the science I was creating and was certain that the impact would be imminent.”

She believes the L’Oréal-UNESCO For Women in Science award will help to bring more recognition to scientists in Lebanon and other emerging economies, as well as reinforcing the value of interdisciplinary research in advancing environmental science.

Among her many achievements, Pr Saliba has established robust analytical methods to measure the principle toxic ingredients of tobacco smoke. She was the first to identify carcinogenic compounds (such as formaldehyde) in hookah, and has also measured large quantities of major toxic compounds (polycyclic aromatic hydrocarbons) consumed with just one hookah inhalation. More recently, she has become the first to report that electronic cigarettes can generate carbon monoxide, contrary to popular belief.

Pr Saliba has won the American Psychology Association’s award along with her interdisciplinary research team, and the National Lebanese Council’s Scientific Research award, in the environmental category.

In the future, Pr Saliba wants to help create a holistic, integrated approach to finding adaptive solutions to climate change challenges in the Middle East. Her dream is to collaborate with fellow scientists to understand the effects of inhalable and atmospheric particles on human organs, and in particular, how they contribute to the development of diseases such as Alzheimer’s, dementia and cancer in children.

She is passionate about more women entering science, and goes further by stating that science will “do justice to the world” when women scientists outnumber their male counterparts. “Women are more inclusive, they are not afraid of sharing and are highly open to collaboration, which is vital to developing efficient, holistic approaches”, she says.

Pr Saliba has never bowed to the prejudice or gender stereotyping, maintaining a clear focus on her goals and detaching herself from criticism: “I am proud of who I am, and I’ve always acted as me - a smart, elegant, and highly sensitive woman.”

To break the glass ceiling, she believes women scientists must overcome social and cultural barriers at the personal, local and international levels. “Women in science is a way of life”, she says. “It’s a state of mind based on strong logic and driven by scientific evidence.” The way forward, she believes, is leading by example and sharing success stories - she herself was inspired by her postdoctoral supervisor, Dr Barbara Finlayson-Pitts, a leading figure in atmospheric science. Above all, she asks her women students to “stand up for their rights, develop high confidence in their work… and dare to dream”.

*https://www.who.int/phe/health_topics/outdoorair/databases/en/

18
Chemicals have brought great benefits to humans, but have also created significant environmental pollution. Now, a leading woman scientist has uncovered a way to manipulate surface atoms and molecules that could lead to the discovery of new chemical and physical phenomena, and address pressing energy and environmental issues.

Pr Maki Kawai specialises in surface science, the study of fundamental aspects of physics and chemistry that occur at a wide range of surfaces and interfaces (such as between solids and liquids or solids and gases). In particular, she explores surface chemical reactions at a nanoscopic level using vibrational spectroscopy. For example, she and her team are helping to unveil the complexity behind the chemical reaction in catalysis, and exploring the heterogeneous charge distribution at the interface of solids that function as molecular devices.

“The global ambition of science and technology is to support the sustainable development of our planet”, she says. “We must strengthen the fundamental research that can be applied to the many examples of chemicals that have proved to be noxious for the environment, such as microplastics.”

Pr Maki Kawai’s success in manipulating surface atoms and converting the energy absorbed to generate certain chemical reactions on a surface is considered as foundational to nanoscience. In particular, this could lead to ground-breaking physical and chemical discoveries, and pave the way to creating innovative materials with improved characteristics - better performing photovoltaic cells, for example. It could also contribute to energy conversion, which could help to reduce the carbon emissions associated with energy.

She also hopes that the scanning probe microscope, which allows her to create images of surfaces at an atomic level and is central to her research, could become a general tool for characterising surface defects and molecules at different adsorption sites in ambient conditions.

As the daughter of two university physics professors, and a regular visitor to the local science museum with her father, it is perhaps not surprising that the young Maki became interested in science from an early age.

“I was curious to understand the “why” behind everything”, she explains. “I was fascinated by the beauty of nature, and phenomena such as atmospheric pressure and the acceleration of gravity.”

Pr Maki Kawai began her studies at the University of Tokyo in 1971, and gained her first contract with RIKEN, one of Japan’s most prestigious research institutes, in 1980. She later became Executive Director of the institute. She was a Professor at the University of Tokyo, before becoming Director General of the Institute for Molecular Science in 2016. Her accolades include the Commendation for Science and Technology by the Minister of Education, Culture, Sports, Science and Technology Prize for Science and Technology (2008), and the Chemical Society of Japan Award (2009). She won her first award for being an outstanding women scientist in 1996, the Saruhashi Award.

Throughout her distinguished career, Pr Maki Kawai has experienced both challenges and ‘eureka moments’. After completing her PhD and before finding an opportunity to engage in long-term research, she undertook various positions across governmental organisations, academic institutions and businesses. In retrospect, this multi-dimensional experience provided her with an array of different perspectives, and she particularly enjoyed working at Osaka Gas.

However, it is research that truly inspires her. The freedom to explore and the joy of discovery have remained with her, particularly when she uses new theories or ways of thinking to explain unexpected experimental findings. “It’s important to have a dream and move forward with positivity and courage towards your next target”, she says. She recently combined data and theory to explain the differing spin nature of iron phthalocyanine molecules according to the adsorption site.

Commenting on the position of women in science, Pr Maki Kawai says: “Diversity in our science community is always a problem. We must work hard to increase the proportion of women scientists and ensure that men and women can contribute equally.”

She believes that confidence is the key to breaking the glass ceiling, and that collaboration is integral to learning and amplifying global scientific discussions.
In today’s instantaneous, media-driven world, scientific and mathematical challenges requiring deep thought and intellectual engagement with concepts and abstract theories rarely make the headlines. With the exception of a few more ‘celebrated’ branches of science, the contribution of scientists to society typically remains hidden, diverting government funding away from science, according to L’Oréal-UNESCO For Women in Science Mathematics Laureate 2019, Pr Claire Voisin.

And with mathematics often presented to school pupils as a ‘fixed’, unimaginative discipline consisting of ‘ready-made’ definitions, rule and equations, Pr Claire Voisin believes children are deterred from fully exploring the value of mathematics. “I’m in favour of a more open style of teaching, which would encourage students to push themselves and ask themselves more questions”, she recalls.

In her intellectual elasticity and bold, uncompromising and rigorous approach, Claire Voisin embodies the classic idea of a mathematician. Free from the distraction of a mobile phone, she regularly explores new ideas and conundrums as she walks through the streets of Paris. Her love of finding theories, hidden logic and precise structures extends beyond mathematics to art and poetry too, rendering her unique: an artist of mathematics.

The desire to explore complex subjects and push the boundaries has shaped Claire Voisin’s studies and career, leading her to focus on abstract mathematics. She specialises in algebraic geometry, a discipline that studies intrinsic properties of geometric figures starting from their equations. Throughout history, geometry has played an important role in helping us to understand the structure of the world, and more recently, the universe. The first geometers calculated the radius of the Earth, and physicists have built on theories from algebraic geometry to make their own discoveries.

A large part of Pr Claire Voisin’s own pioneering research and achievements in complex algebraic geometry relies on the theory of Hodge structures (algebraic structures at the level of linear algebra) and uses it to address fundamental questions on the topology of complex varieties. The most important question in this field is the Hodge conjecture, a major unsolved problem in algebraic geometry.

Speaking about the value of mathematical research, Pr Claire Voisin says that it is hard to predict what will remain important in the long term. The value of research in pure mathematics is not measured by immediate applications, but it is important particularly in terms of developing new ways of thinking. “It might be just one construction, one argument, or the main result that are important for the future”, she says.

With a string of awards and accolades to her name, including membership of the Académie des Sciences, Pr Claire Voisin is also the first woman mathematician to enter the Collège de France, the country’s most prestigious research institution. She is also one of five women to have been awarded the gold medal from the CNRS (the French National Centre for Scientific Research).

While Pr Claire Voisin has not personally experienced gender discrimination during her career, she recognises that most women scientists do not achieve the recognition they deserve, and their work is often undervalued, or not considered as equal to men’s work. “I think women have to make more effort than men, in particular at the beginning of their career, in order to be considered as serious researchers”, she says.

Indeed, with too few women becoming mathematicians and scientists, particularly in her field, Pr Claire Voisin believes that women in science are too often treated as a minority, rather than “scientists among scientists”. The lack of women in research roles represents “a significant loss for science”. She recommends that all young women scientists should be ambitious and overlook external perspectives, and hopes that her recognition as a L’Oréal-UNESCO For Women in Science laureate will help encourage more women to pursue mathematics, including pure mathematics.
Renowned physicist Pr Karen Hallberg’s is an expert in quantum condensed matter physics, the study of the structure and behaviour of matter. She has developed and improved numerical tools, including the ‘Density Matrix Renormalisation Group’ technique, to calculate the precise physical properties of novel materials at the microscopic level.

“Studying this complex behaviour allows us to understand the basic mechanisms behind, for example, high temperature superconductivity or colossal magneto resistance”, she says. “In short, we expect to contribute to the understanding of one of the most complex problems in physics: interacting many-body quantum behaviour.”

Superconductors are materials in which resistivity completely disappears under a certain temperature, the current range lying below approximately -160°C. Without resistivity, it is possible to create very strong magnetic fields or to transport electricity for long distances without heat loss. Superconducting materials are used in diverse applications including medical equipment (such as magnetic resonance imaging scanners), digital circuits, sensitive magnetometers and detectors, and energy storage and generation. Today, there is a quest among the scientific community to create new materials that become superconductors at room temperature. To succeed in this endeavour, researchers, including Pr Karen Hallberg, are seeking to deepen their understanding of what takes place at the atomic and electronic scales.

Pr Karen Hallberg’s scientific journey began early in life, when as a child, she continuously asked questions about the world, earning her the nickname of “Señorita por qué” (“Miss why”), and formed an all-girl science club with her friends.

“I remember the sense of awe when I looked up at the stars”, she says. “It always made me feel so insignificant, even more now that I am more conscious of the immense space-time distances!”

Her enthusiasm and the joy of discovery have stayed with her throughout her career. While calculating the precise densities of states, she was recently fascinated to identify a new particle, a quasiparticle, and elaborated a theory to explain it.

In the future, she would be interested to understand the microscopic origin of high temperature superconductivity, and how scientists might be able to build materials atom by atom, giving them predetermined properties for new and important applications. Beyond her immediate field, she dreams of leveraging physics to understand consciousness, the behaviour of the human brain, and even the emergence of life.

Pr Karen Hallberg won the John Simon Guggenheim fellowship in 2005, and was honoured by L’Oreal and the Argentine government’s National Scientific and Technical Research Council in 2008 for her work on quantum properties and transport in nanoscopic and molecular systems. She is also a corresponding member of Argentina’s National Academy for exact, Physical and natural Sciences, a member of the Argentine Committee on Ethics in Science and Technology and Senior Associate of the International Centre for Theoretical Physics in Trieste.

In addition to her studies, Pr Karen Hallberg contributes to developing international scientific policy, as a council member of the Pugwash Conferences for Science and World affairs. She is also committed to supporting minorities and women in science. “Physics, for example, is among the scientific careers that, regrettably, has the lowest participation of women”, she explains. She believes more action is needed to support women scientists throughout their careers, particularly when it comes to balancing motherhood with the productivity levels and international travel that are vital to progressing and gaining recognition.

Pr Karen Hallberg believes the L’Oreal-UNESCO For Women in Science Award plays an instrumental role in promoting collaboration between leading women scientists and helping women in science achieve greater visibility. “I can’t think of any other global initiative on gender issues in science with a broader impact”, she says.

Her innovative and creative applications of these techniques constitute a fundamental contribution to the understanding of nanoscopic systems and novel materials.
Pr Ingrid Daubechies is a physicist and applied mathematician. Her remarkable research on wavelet theory has transformed the numerical treatment of images and signals for data compression, creating a new universal language for scientists and catalysing multiple innovations. An exceptional woman scientist, she is also engaged in the fight for equal opportunities, education and access to science in developing countries.

“In maths, we always seek to understand magical things,” says Pr Ingrid Daubechies. “I hope that my work will also be instrumental in helping people see that mathematics is everywhere, identifying patterns and applying them in a different setting is very natural, very human.”

Pr Ingrid Daubechies’ steadfast focus on recasting problems in a new light saw her building on the foundational work of wavelet pioneer Yves Meyer to establish the ultimate solution to wavelet decomposition. She describes wavelets as “mathematical building blocks” that can be used to extract the essential elements of images or signals (according to the required scale) without losing their quality. Meyer describes her work as a “revolution”.

Wavelet decomposition has become an indispensable tool for working with signals, images and video. For example, it has enabled the reconstruction of early Hubble Telescope images, electronic sharing of highly detailed fingerprints, the detection of forged documents, the rise of digital cinema and even medical imaging. Similarly, it is a vital component of wireless communication, and is also used to compress sound sequences into MP3 files, so that music can be stored and transmitted via iPods and smartphones. Scientists even used construction akin to wavelets to help detect, in 2015, a gravitational wave generated by the collision of two black holes.

Born in Belgium and naturalised as American in 1996, Pr Ingrid Daubechies’ studies and career have spanned two continents. With an innate interest in how and why things work, she was encouraged towards science by her school teachers and parents, and remembers being particularly inspired by learning about light refraction and prisms. “I felt absolutely thrilled, and a little incredulous, trying experiments to see whether it was really true,” she recalls. “The sense of combined wonder and awe, and the thirst to understand is what drives me still.”

After gaining her PhD in theoretical physics at Vrije University in Brussels in 1980, Pr Ingrid Daubechies later joined the Mathematical Research Center of AT&T Bell Labs in New Jersey, United States, in 1987, before moving to Rutgers University and becoming the first woman ‘Full professor’ of mathematics at Princeton University in 2004. She currently resides at Duke University, where the mathematics department is rated by The Times Higher Education review as the tenth best globally. She received a Guggenheim fellowship in 2013 and was awarded the medal of the US National Academy of Sciences in 2000. She is also a foreign member of the prestigious Académie des Sciences in France.

Beyond her mathematical prowess, Pr Ingrid Daubechies has been active in helping to expand access to maths and science in developing countries, a cause that she pursued vigorously as the President of the International Mathematical Union from 2011 to 2014.

While she has not experienced gender discrimination on her own scientific journey, Pr Ingrid Daubechies recognises that there are still many barriers to more women entering science, with too few role models and few women in positions of authority. In addition to mentoring for young women scientists, she believes a wholesale shift in perceptions is needed, both in terms of gender equality and the nature of mathematics as a subject. “Many people see life as a scientist as rather narrow or uncreative – which isn’t true at all – and I believe this discourages women more than men,” she says. “Diversity brings a wealth of ideas and more surprising ways of approaching issues, which is vital for any creative discipline,” she concludes. “This is now more important than ever as scientists seek to address the existential challenges facing life on Earth.”
Since 2000, the L’Oréal-UNESCO For Women in Science programme has highlighted the achievements of younger women who are in the early stages of their scientific careers.

Each year, the International rising talents programme selects the 15 most promising women scientists among the almost 280 national and regional fellows of the L’Oréal-UNESCO For Women in Science programme. These young women are the very future of science and recognising their excellence will help ensure that they reach their full potential.
Dr Saba Al Heialy
L’OERAL-UNESCO REGIONAL FELLOWSHIP - UNITED ARAB EMIRATES
Mohammed bin Rashid University for Medicine and Health Sciences

HEALTH SCIENCES

Asthma and obesity are increasing worldwide, as poor air quality and convenience lifestyles, characterised by unhealthy diets and physical inactivity, take their toll. Now, obesity is prompting a rise in the prevalence of asthma, with patients of this ‘responding poorly to conventional therapy, such as steroid treatment’. Dr Saba Al Heialy is researching the still relatively unknown mechanisms underlying this phenomenon, in order to help identify new therapies for patients. Recently, adipocytes (fat cells) are emerging as pro-inflammatory cells capable of secreting cytokines and hormones. Moreover, adipose tissue is infiltrated with large amounts of T cells. This potential immunomodulatory role of adipocytes has led her to explore the implications of the crosstalk between T cells - an essential part of the immune system - and adipocytes (fat cells) in producing steroid hypersensitivity in obese asthmatics. “Ultimately, the objective of my research is to contribute to the advancement in asthma research”, she says.

Dr Saba Al Heaiy’s father, an accomplished researcher, was an important inspiration and mentor in her childhood, instilling in the young Saba “the core values and self-confidence that have allowed me to become the researcher I am today”. At university, she gained valuable laboratory experience by taking ownership of an asthma and allergy project in the summer holidays, enjoying the sense of independence and deepening her curiosity in scientific research. Despite her proven ability and enthusiasm, Dr Saba Al Healys has had to work doubly hard to overcome gender and age prejudice throughout her career. “For women to advance in science, we must challenge the perception that their work is in some way inferior to that of equally qualified male scientists”, she believes.

“Women could easily thrive in senior scientific roles - but they must be judged on merit and given equal opportunities in the workplace,” she says. To create change, young girls must be offered the opportunity to participate in practical, interactive science programmes, and be shown examples of successful women in the workplace. “I hope my story will inspire many girls and young women in the Middle East to pursue their scientific dreams and reach their full potential”, she concludes.

Dr Zohra Dhouafi
L’OERAL-UNESCO REGIONAL FELLOWSHIP - TUNISIA
Center of Bionotechnology of Bey-Célina
NEUROSCIENCE / BIOCHEMISTRY

Alzheimer’s disease is considered to be the most common form of dementia globally, yet there is currently no cure for this devastating neurodegenerative disorder. Dr Zohra Dhouafi is researching the theory that the misfolding, aggregation and brain deposition of the amyloid-beta protein triggers the disease. Through her upcoming research project, she will use one of the most promising approaches - a natural antioxidant extracted from henna tree leaves (discovered through her previous research) to inhibit, interfere and counteract the aggregation process. Among the innovative aspects of the project, the team will seek to preserve the molecule’s stability and bioactivity, and optimise its passage through the blood brain barrier. In this way, Dr Zohra Dhouafi aims to catalyse the development of more potent compounds for the prevention and treatment of Alzheimer’s.

“My dream is to find an effective treatment for Alzheimer’s disease and improve quality of life for patients and their families”, she says.

Dr Zohra Dhouafi has always had an interest in biological sciences. Her longstanding focus on neurodegenerative diseases began during her first research experience in biochemistry at Sherbrooke University in Canada. Since then, she has participated in multiple international collaborations exploring the biochemical and molecular mechanisms involved in such diseases.

“Women should have just as much responsibility in promoting human development as men”, she says. “Their actions must go hand in hand”, she adds, pointing to the famous collaboration of Pierre and Marie Curie. She believes that women scientists have a complementary approach to that of their male counterparts, driven more by empathy, patience and a sense of social responsibility.

Having benefited significantly from mentorship, Dr Zohra Dhouafi agrees that talented mentors stand to inspire many more young women scientists, reinforced by far greater public recognition women scientists’ achievements. “An equal gender balance would greatly enhance the quality of scientific research”, she concludes.

DNA is the blueprint for life. The valuable information it carries decides the fate of all organisms. Dr Menattallah Elserafy is researching DNA repair mechanisms to advance understanding of the fundamental processes in mammalian cells. She and her research team could identify new players that protect the cells from DNA damage. She also discovered that a protein in yeast cells is involved in preventing DNA damage caused by ribonucleotides misincorporation into the genome. Thereby, mutations in the human protein could be associated with diseases, neurological disorders and cancers. Her findings could help identify new disease-causing mutations, aid diagnosis and pave the way for personalised therapies according to the patient’s genetic background.

Dr Menattallah Elserafy early became passionate about molecular biology and genetics. “I wanted to create a positive impact in society”, she recalls. Today, she is convinced that raising research standards in Egypt could put her country “back on the map of scientific research”, and importantly, play a major role in solving pressing water, environmental and energy challenges.

According to her, gender equality should be a key focus for children’s education, with girls encouraged to “dream big and aim high”; Dr Menattallah Elserafy is inspired by many women scientists, including the first ever female doctor, an Egyptian woman living in 2700 BC, and Rosalind Franklin, the woman scientist who first presented an X-ray structure of the DNA molecule.

She herself is contributing to educating future generations of women scientists by supporting younger researchers in the laboratory. “I believe the L’OERAL-UNESCO For Women in Science International Rising Talents fellowship will give me even more opportunities to talk to young women scientists and inspire them to make a difference”, she says.
Expanding access to affordable, high quality medical care in Africa is a major focus for sustainable development. Specialising in neuropharmacology and neuroscience, Dr Priscilla Kolibea Mante is researching alternative, plant-based therapeutic options to manage drug-resistant epilepsy and the neglected tropical disease, neurocysticercosis. She is currently exploring the anticonvulsant activity of the plant alkaloid cryptopine and its solid-lipid nanoparticles in the management of neurocysticercosis-induced epilepsy. By identifying a way to help cryptopine permeate more efficiently into the central nervous system, the risk of convulsion should be reduced, helping the patient to manage their condition as effectively as possible.

“It’s very rewarding to know that my research could significantly alter complicated structures like the brain and positively affect people’s lives”, she says.

Dr Priscilla Kolibea Mante believes the biggest challenge for women in science is managing negative perceptions of ambition in women and overcoming gender stereotypes. Having faith in the future, she is convinced that her generation has been fortunate to receive strong support, and believe women can tap into that and spearhead our careers to higher levels. “The world will make room for us”, she says. “The more women push for senior roles, the harder it will be to ignore them.”

The expert guidance of both men and women throughout her career has been so important that Dr Priscilla Kolibea Mante now considers herself a “champion” of mentorship, regularly supporting younger scientists in pursuing their dreams. She concludes: “Sometimes it’s important to hold your mentee’s hand and guide them towards opportunities they never knew existed.”

Neurodegeneration is a growing issue for an ageing global population. Dr Sherry Aw is conducting genetic experiments in fruit flies to understand the causes behind neurodegenerative diseases, and support the development of novel treatments. In particular, by exploring how certain cells become affected and the functional results of their degeneration, she and her team have been able to pinpoint movement dysfunctions that resemble the effects of Parkinson’s disease and Spinocerebellar ataxia 3 in humans. Her current goal is to understand how the tremor and other movement disorders experienced by sufferers of these diseases are generated at the physiological, cellular and molecular levels.

“So that we can start to develop rational treatments for these debilitating symptoms, and eventually cure these diseases”, she says.

Her passion for scientific research was sparked when one of her university tutors suggested that she gain research experience. “I realised that by elucidating the molecular mechanism of plant immunity, I would be able to contribute towards ensuring food security for the world's population”, she recalls. “That’s why I decided to pursue a career in science.”

Growing up in southern Japan, Dr Mika Nomoto was surrounded by a rich and diverse natural environment. She loved to study plants, flowers and insects, and became intrigued by different plants’ reaction to mould and microbes. When she began her biology studies at Kagawa University, she was surprised to learn that plants possess sophisticated immune systems, like humans.

While she has not experienced the “glass ceiling” in her career, Dr Mika Nomoto agrees there is a pressing need for more women scientists. “I believe that science needs diversity and women are the key to advancing science”, she says. “It’s vital that we persuasively transform perceptions of women’s role in society through media and politics.”

Finally, mentorship is invaluable, Dr Mika Nomoto believes. She herself has gained a great deal of knowledge from her mentors, including how to establish a venture company and apply for patents, as well as conduct world-leading scientific research. “In the future, I’d be happy to mentor young researchers – both women and men”, she concludes.

When plants become infected with biotrophic pathogens (fungi that feed on the living cells of their hosts), host resistance proteins trigger an acute immune response, including the eventual death of the affected cell. The infected tissues also produce signals that spark the accumulation of immune hormone salicylic acid and mobilise antimicrobial pathogen-related genes within the uninfected distal leaves. This plant-specific immunity is known as systemic acquired resistance (SAR). While it is effective in resisting biotrophs, it suppresses the plant’s resistance response to herbivores, thereby exposing it to damage from pests. Dr Mika Nomoto is researching how SAR is regulated at a molecular level in order to better understand its antagonistic interaction with herbivore resistance and help promote sustainable pest management.

“I realised that by elucidating the molecular mechanism of plant immunity, I would be able to contribute towards ensuring food security for the world’s population”, she recalls. “That’s why I decided to pursue a career in science.”

Growing up in southern Japan, Dr Mika Nomoto was surrounded by a rich and diverse natural environment. She loved to study plants, flowers and insects, and became intrigued by different plants’ reaction to mould and microbes. When she began her biology studies at Kagawa University, she was surprised to learn that plants possess sophisticated immune systems, like humans.

While she has not experienced the “glass ceiling” in her career, Dr Mika Nomoto agrees there is a pressing need for more women scientists. “I believe that science needs diversity and women are the key to advancing science”, she says. “It’s vital that we persuasively transform perceptions of women’s role in society through media and politics.”

Finally, mentorship is invaluable, Dr Mika Nomoto believes. She herself has gained a great deal of knowledge from her mentors, including how to establish a venture company and apply for patents, as well as conduct world-leading scientific research. “In the future, I’d be happy to mentor young researchers – both women and men”, she concludes.

Dr Jacqueline Romero is a physicist working in the field of quantum physics, which explains the nature and behaviour of matter and energy at the atomic and subatomic level. In particular, she is exploring how an infinite number of possible shapes of photos - particles of light - can be used to encode information. Ultimately, this could lead to reliably secure communication, help conserve data privacy and guard against the growing risk of cyberattacks, and deliver more powerful computation.

Her journey to pushing the boundaries of quantum information began in the Philippines, where she was encouraged by her school teachers to pursue science, even participating in national physics competitions. “It was just beautiful to me, how the rules of physics can describe the natural world so poetically”, she recalls. “I enjoy the creative and problem solving process. The fun I have is really the reward!” At university, Dr Jacqueline Romero joined an established optics research group, before identifying an opportunity to pursue an experimental quantum physics PhD at the University of Glasgow.

As part of a minority of women in quantum science, she believes improving the representation of women in science requires a fundamental cultural change, starting at school, where girls’ and boys’ sense of wonder and curiosity should be equally nurtured. In addition to mentorship, strong female role models at every stage of the scientific career path would send positive signals to aspiring women scientists, she suggests. Importantly, inclusivity and gender diversity should be framed in the context of productivity, with leaders creating the supportive environment that would help women scientists return to peak professional performance after having a child.

“Winning a L’Oréal-UNESCO For Women in Science fellowship has given me a national platform to show that women, particularly mothers, can succeed in science”, she concludes. “People are inspired by stories and I think my journey is a story that could do so much to inspire young girls and young women scientists.”

If science could achieve anything, Dr Jacqueline Romero would like to scientific research to help solve the major social inequalities that exist in our world.
Dr Laura Elo leads a multidisciplinary team of 30 scientists at the Turku Medical Bioinformatics Centre in Finland. Together, they develop computational data analysis tools and mathematical modelling methods to identify more reliable early indicators of complex diseases such as type 1 diabetes or cancer, and predict potential disease and treatment outcomes. She and her team have developed several powerful computational models to interpret molecular and clinical data in a robust way, working closely with experimental and clinical teams and unique sample biobanks. Her ultimate goal is to help improve disease diagnosis, prognosis and lead to new treatment strategies with high potential for breakthrough findings and wide impact on medical research. “I hope our research helps future patients to get the best possible treatments”, she says. “If we can improve the life of even a single patient, it is worth the effort.”

Among the challenges faced by researchers, she believes the extensive competition for funding can be both unhealthy for the field of scientific research and create barriers to progress. “Within my group, I hope to encourage enthusiasm for making new discoveries through openness and communication”, she explains. As Research Director, Dr Laura Elo recognises the distinct benefits that diversity brings to any team, commenting that “a good mix of people with different backgrounds and ways of working ensures open-minded and innovative research”. Proving her worth as a woman scientist has not to clip their wings. We are women, mothers and daughters to take equal responsibilities in the home and value both women’s and men’s careers”, she says. “We might not be able to capture everything, but I want to get as close as we can and I’m happy to be contributing to this endeavour.”

Born into a family of chemists, Dr Urte Neniskyte has viewed life through the prism of science from an early age. “The first images I saw of bacterial plates sparked my passion to be a researcher of living things”, she says. As a mother of a young daughter and a neuroscientist, Dr Urte Neniskyte is acutely aware of the importance of early childhood development. “We must raise our sons and daughters to take equal responsibilities in the home and value both women’s and men’s careers”, she says. This includes educating children on gender equality from an early age.

To increase the number of women in science, she believes women scientists must gain the public recognition they deserve for their discoveries. She is unequivocal: “We must stop living in “pink and blue” world and acknowledge that gender-based divisions arise from the traditions of the society rather than how the brain works.”

The majority of interactions between the regulatory elements of a genome and the corresponding regulated gene are uncharted, a major missing link in understanding genome control. Dr Biola Maria Javierre Martínez is researching chromatin interactions (crucial to cellular health), to help improve knowledge of tumour processes and provide new opportunities for diagnosis and treatment. Additionally, she is exploring the physical interactions between gene and regulatory elements to connect blood cancer genetic alterations to putative target genes. This could help prioritising new disease-candidate genes and pathways, reveal insights into the genomic regulatory mechanisms underlying cancer. It will also help to better predict patient outcomes and design improved and more personalised treatments. Today, her dream is to help uncover more effective, gentler treatments for cancer, particularly for children. As a scientist and mother, Dr Biola Maria Javierre Martínez often feels that she has insufficient time to give of her best in either capacity. Addressing this common challenge among women scientists and empowering more women to participate in science would mean re-educating the whole of society, she believes. Women must also develop greater self-belief and learn to present their work more confidently.

The complexity of the human brain has yet to be fully understood. Dr Urte Neniskyte is researching how our brains develop in early childhood (6 months to 6 years), with particular reference to anomalies that can lead to serious mental illness. She is currently exploring why excessive synapses sometimes remain, rather than being removed or “pruned” for optimum efficiency. Aberrations in this “synaptic pruning” process can result in neurodevelopmental diseases such as autism, schizophrenia and epilepsy. Dr Urte Neniskyte’s aims to uncover what determines which synapses should be maintained and which should be removed, and how the process could be modified to correct any errors, before a disease can develop.

“I don’t want to be seen as a female scientist, just as a scientist.”
Cancer is the second leading cause of death globally, according to the World Health Organization, and its prevalence is rising sharply. To address the inherent complexity and heterogeneity of cancer, developing personalized therapeutic strategies is crucial. Pr Nurcan Tuncbag is leading an interdisciplinary research project to deliver a “precision medicine” approach by leveraging sophisticated computational analysis to interpret the increasing volumes of data obtained with high-throughput technologies. Analysing this “big data” could help to identify potential synergies, and reveal how biological pathways are organised and altered at molecular level in cancer, as well as how these networks can be targeted to disrupt the abnormal signals for treatment.

The field of bioinformatics has allowed Pr Nurcan Tuncbag to combine her biological interest in diseases with her mathematical prowess and passion for engineering. “I was lucky that all my mentors were supportive of gender equity in science”, she recalls. However, as a woman, she still comes across barriers within the scientific community, when she sometimes feels obliged to prove her expertise or knowledge to male attendees, despite being equally qualified.

To empower women scientists and help achieve the necessary diversity to advance engineering sciences, Pr Nurcan Tuncbag believes that far greater emphasis should be placed on science, technology, engineering and mathematics at schools, starting from an early age.

“Throughout history, women have influenced society and changed the world through their scientific discoveries”, she concludes. “By enhancing the visibility of women scientists, the L’Oréal-UNESCO For Women in Science programme will enable more women to contribute valuable discoveries to our world.”

Antibiotics revolutionised medicine and have since saved many human lives, significantly slowing mortality rates associated with common infectious diseases. Yet the widespread overuse of these once powerful drugs has led to increasing bacterial resistance, creating a serious risk that people could once again lose their lives to common infections and minor injuries. In the race against time to uncover a solution, scientists including Dr Maria Molina are developing antimicrobial therapies as a potential alternative treatment for bacterial infections. Her work focuses on developing multifunctional nanogels capable of releasing antibiotics to bacteria (notably P. Aeruginosa) in synergy with a thermal effect created via electromagnetic radiation.

As a child, Dr Maria Molina dreamt of making a famous discovery that could solve a great human challenge, propelling her into the school text books. Committed to conducting research that improves people’s quality of life, she still dreams of scientists uncovering solutions to other pressing issues, including expanding access to safe water and life-saving medicines in developing countries.

Dr Maria Molina perceives that women scientists face an inherent inequality: to succeed at work while undertaking a disproportionate share of household responsibilities, they must be more efficient than men and naturally adept at multi-tasking. This becomes more problematic at the higher echelons of science, where heavy time commitments and inflexibility are the norm.

Empowering more women to undertake excellent scientific careers is vital. “The contribution of women scientists creates a diverse vision that is invaluable in addressing the great challenges facing humanity”, she says. Overturning social stereotypes and entrenched perceptions must begin at school, Dr Maria Molina believes. “Girls should be encouraged to follow their interests rather than conforming to what people expect”, she says. Strong female role models are important, as are programmes that promote women in science, such as the L’Oréal-UNESCO For Women in Science programme.

Carbon capture stands to play an important role in fighting climate change. Dr Ana Sofia Varela is using electrocatalysis to convert carbon dioxide (CO₂) into useful products, in a process known as CO₂ electrolysis. In generating this type of reaction, she uses electricity as a driving force and is exploring diverse catalysts, with a particular focus on new types of inexpensive catalysts comprised of abundant elements (carbon, nitrogen and transition metals). Affordability is central to the economic and technological viability of the process. Ultimately, CO₂ electrolysis will allow the use of renewable electricity and waste CO₂ to produce carbon-based chemicals (carbon and hydrocarbons).

“My dream is to help avert climate change and its negative impacts”, she says. “I hope that CO₂ capture and utilisation will prove to be a key solution, alongside the development of clean energies and energy efficient technologies.”

Both Dr Ana Sofia Varela’s parents are chemists, and encouraged her childhood curiosity in the world, providing science-based answers to her questions. Years later, as a fully fledged scientist, Dr Ana Sofia Varela returned to Mexico, after completing her PhD and postdoctoral studies in Europe, to face the harsh reality of doing more with less funding. Nevertheless, she began her own research group and equipped her laboratory, an effort that has been significantly advanced by her L’Oréal-UNESCO For Women in Science Regional Fellowship. While more women are undertaking scientific careers, Dr Ana Sofia Varela believes they still risk not being taken seriously in a male-dominated field. “Women have to prove their value, while men’s is taken for granted, and take care not to overstep the boundary between assertive and aggressive, particularly in seeking senior roles”, she says. “This must change, as greater diversity in science will allow us to develop multiple approaches to the challenges facing humanity.”

The global burden of neurological diseases has grown substantially over the past 25 years, as the world population expands and ages. Dr Jacquelyn Cragg is using statistical algorithms to better understand the progression of such diseases, including Parkinson’s disease, amyotrophic lateral sclerosis (ALS) and spinal cord injury. She is leveraging “big data” sources and machine-based learning to identify novel, reliable predictors of disease progression, and understand how diverse factors interact to predict long-term outcomes. She aims be a leader in neuro-analytics, helping to uncover innovative treatment strategies and therapies for people suffering with neurological diseases.

“Growing up, I had great teachers whose dedication and willingness to answer my questions allowed me to pursue my passion for mathematics and biology”, she says. Encouraged by teachers to enter mathematics competitions, explore lateral thinking at “Challenge Camps” and attend science fairs, Dr Jacquelyn Cragg developed a strong knowledge of maths, statistics and science, creating a robust foundation for her future career. She continued to benefit from supportive mentors at the International Collaboration on Repair Discoveries in Vancouver, Harvard University and Balgirst University Hospital in Zurich. Dr Jacquelyn Cragg perceives major challenges for women in science. Despite the evidence that men and women have the same inherent scientific ability, she believes there are clear differences in the way that raw ability is nurtured over time, with distinct gender biases creeping in. “Overcoming gender stereotypes and encouraging girls to grow their interest in science should start from an early age”, she concludes. “Girls and boys must know that everyone can do the same things.”

A rigorous SELECTION PROCESS

255 NOMINATIONS FROM HIGH LEVEL SCIENTISTS FROM 62 COUNTRIES
Each nomination is reviewed by 2 or 3 scientific experts in the candidates’ field of research.

66 SHORT-LISTED CANDIDATURES FROM 15 COUNTRIES Evaluated by a jury of 12 eminent scientists.

SELECTION OF THE 5 LAUREATES 1 FROM EACH OF THE WORLD’S REGIONS

REGIONAL SELECTION:
- NORTH AMERICA
- LATIN AMERICA
- EUROPE
- AFRICA AND THE ARAB STATES
- ASIA-PACIFIC
International Jury 2019

L’ORÉAL-UNESCO FOR WOMEN IN SCIENCE AWARDS

To be considered for the International Awards and be recognized by the scientific community, each researcher had to be nominated by their peers: Presidents of universities, Academies of Sciences, Nobel Prize winners, or laureates of a previous edition of the L’Oréal-UNESCO For Women in Science Awards. An international jury composed of 12 eminent scientists selected the award winners.

Professor Artur Avila, President
Professor at Institute of Mathematics University of Zurich, Switzerland
Extraordinary Researcher, IMPA (Instituto de Mathematica Pura e Aplicada), Rio de Janeiro, Brazil
2014 Fields Medal

Doctor Frédéric Leroy
Director, Strategic Foresight, L’Oréal Research and Innovation, France

Doctor Fernando Quevedo
Director of the Abdus Salam International Centre for Theoretical Physics (ICTP), Italy

Professor Rajaa Cherkaoui El Moursli
Resident member of the Hassan II Academy of Science and Technology. Member of TWAS Fellow of the African Academy of Sciences. Professor of Nuclear Physic at the Faculty of Science, Mohammed V University, Morocco
L’Oréal-UNESCO Laureate 2015

Professor Nader Masmoudi
Professor of Mathematics at the Courant Institute of Mathematical Sciences, New-York University, USA

Professor Gil Kalai
Professor, Einstein Institute of Mathematics, Hebrew University of Jerusalem, Israel

Professor Alaa Salem
Professor at Department of Earth Sciences, Faculty of Sciences, Kafrelsheikh University, Egypt

Professor Silvia Torres-Peimbert
Professor at Institute of Astronomy, National Autonomous University of Mexico, Mexico
L’Oréal-UNESCO Laureate 2011

Professor Vivian Wing-Wah Yam
Chair Professor Philip Wong Wilson Wong of Chemistry and Energy, Department of Chemistry, University of Hong-Kong, China
L’Oréal-UNESCO Laureate 2011

Professor Jehane Ragai
Professor Emerita, Department of Chemistry, School of Sciences and Engineering, The American University in Cairo, Egypt

Professor Eugenia Kumacheva
Canada Research Chair in Advanced Polymer Materials, Department of Chemistry, University of Toronto, Canada
L’Oréal-UNESCO Laureate 2008

Professor Tebello Nyokong
Director of DST/Mintek Nanotechnology Innovation Centre, Department of Chemistry, Rhodes University, South Africa
L’Oréal-UNESCO Laureate 2009
Selection committee

The 2019 International rising talents Selection Committee is composed of 13 highly regarded scientists chosen from the L’Oréal-UNESCO For Women in Science national and regional juries in Brazil, Canada, Chile, China, France, India, Lebanon, Morocco, Poland, Russia and the United States of America.

Doctor Marie Abboud
Associate Professor, Former Director of the Physics Department, Faculty of Sciences, Saint-Joseph University, Lebanon
Member of the Levant and Egypt Regional Jury, 2009 International Fellow

Professor Abdelaziz Benjouad
Vice-president in charge of Research and Development, International University of Rabat, Morocco
President of the Maghreb Regional Jury

Doctor Bruno Bernard
L’Oréal Fellow, L’Oréal Research & Innovation, France

Professor Maria D. Vargas
Professor at the Department of Inorganic Chemistry of the Federal University Fluminense (UFF), Member of the Brazilian Academy of Sciences and Commander of the National Order of Scientific Merit (2010), Brazil
Member of the Brazilian National Jury

Professor Nadia Ghazzali
Department of Mathematics and Computer Science, Université du Québec à Trois-Rivières (UQTR), Natural Sciences and Engineering Research Council of Canada (NSERC), Chair for Women in Science and Engineering, Canada
Member of the Canadian National Jury

Professor Aleksey Khokhlov
Vice-Rector of Moscow State University and Chair of Polymer and Crystal Physics, Physics Department, Moscow State University, Member of Presidium of Russian Academy of Sciences, Russia
Chairman of the Russian National Jury

Doctor H Krishnamurthy
Scientist ‘G’
Head, Research Facilities, National Centre for Biological Sciences, Tata Institute of Fundamental Research in Bengaluru, India
Member of the Indian National Jury

Professor Ewa Łojkowska
Head of Department of Biotechnology, Intercollegiate Faculty of Biotechnology, University of Gdańsk & Medical University Gdańsk, Vice president of the Committee of Biotechnology at the Polish Academy of Sciences, President of Professor Wacław Szybalski Foundation, Poland

Professor Gloria Montenegro
Professor of Biology and Natural Sciences of the Pontifical Catholic University of Chile, Full member of the Academy of Sciences for the Developing World, President of the Scientific Council of Fundacion Copec PUC, Chile
President of the Chilean National Jury and L’Oréal – UNESCO Laureate 1998

Doctor Shirley Malcolm
Senior Advisor and Director, SEA Change, American Association for the Advancement of Science, USA

Ms Rovani Sigamoney
Programme Specialist, Section for Innovation and Capacity Building in Science and Engineering, Natural Sciences Sector, UNESCO

Professor Yan Shen
Chinese Academy of Science, Vice President of China Association for Science and Technology, Deputy Director of National Nature Science Foundation of China, China
Member of the Chinese National Jury

Doctor Sabrina Stierwalt
Research Scholar, California Institute of Technology Adjunct Faculty, University of Virginia, USA
Member of the American National Jury
The Fondation L’Oréal and UNESCO would like to express their gratitude to their partners for the support they bring to the For Women in Science programme.

The French Academy of Science helps to build a solid base of recognition for these female scientists by choosing them through a rigorous selection progress.

The L’Oréal-UNESCO For Women in Science programme is also a campaign of awareness on the place of women in science, throughout the world, thanks to JCDecaux, which has offered a powerful promotion display for a month in 7 main airports worldwide (Beijing, Barcelona, Dubai, Johannesburg, London, New York & São Paulo) in the Parisian streets and Paris Aéroports, where the iconic posters have been displayed in March 2019.

All media resources for the 2019 L’Oréal-UNESCO For Women in Science programme are available on www.fondationloreal.com/mediacenter

Follow the L’Oréal-UNESCO For Women in Science programme on:
@4WOMENINSCIENCE #forwomeninscience