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Part One

INTRODUCTION: THE MATHEMATICIANS AND
THEIR HERITAGE

(Q. Mushtaq)

One distinctive feature of the formation of the early Arab caliphate’s culture was its

inheritance of heterogenous cultural traditions. The caliphate embraced several centres of
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ancient Eastern civilizations such as Egypt, Mesopotamia, Iran, Khurasan and Transoxa-

nia, many of whose long cultural traditions were directly or indirectly connected with the

culture of ancient Greece.

The successors of the Umayyads, the Arab cAbbasid caliphs, were the catalysts in the

Muslim cultivation of the arts and sciences, and turned Baghdad into a centre of excellence

for the learned and wise within the caliphal lands. Caliphs like Hārūn al-Rashı̄d (786–809)

and al-Ma’mūn (813–33) were keen patrons of the learned at their courts. They made

efforts to obtain the best philosophical and scientific texts of ancient Greece and India in

Greek, Syriac, Middle Persian and Sanskrit. These were translated into Arabic, sometimes

via Syriac, at Baghdad by competent scholars, a process centred on the famous Baytal-

Hikma (House of Wisdom) in Baghdad and which, by the time of al-Ma’mūn, had become

a well-organized activity of unprecedented scope and vigour. The translation work which

began in the second half of the eighth century was practically over by the end of the tenth

century, however, never to be taken up again on any significant scale in the Islamic Middle

Ages.

A brief look at a few of the translators reveals the variety of their ethnic and religious

backgrounds. Some were Persian, like the astrologer Ibn Nāwbakht, who translated from

Pahlavi into Arabic. Al-Fazārı̄, who worked with a scholar from Sind on the translation

of the astronomical work, the Sindhind (from Sanskrit, ‘perfected’), was of Arab descent.

The most active translator of medical works in Greek and Syriac, the celebrated Hunayn

b. Is’hāq (d. 873), was a Nestorian Christian from Hira. His son and pupil Is’hāq (d. 911),

who like his father knew Greek, translated philosophical works of Aristotle, the Elements

of Euclid and Ptolemy’s Almagest. Thābit b. Qūrrā (d. 901), a member of the pagan Sabian

community at Harran, worked on the translation of mathematical works from Greek.

Some eminent mathematicians

While practically every branch of intellectual thought was pursued during the ‘Age of

Achievement’, the importance attached to the mathematical and astronomical sciences was

notable. Among the eminent mathematical scientists who came from or worked in eastern

Persia or Central Asia were Muhammad b. Mūsā al-Khwārazmı̄, who flourished at the
cAbbasid court of Baghdad; Abu ’l-Wafā’ Muhammad al-Būzajānı̄, who was patronized

by the Buyids; Abū Mahmūd from Khujand; Abū Rayhān al-Birūnı̄, who flourished under

the Ghaznavids; cUmar Khayyām, who became well known under the Seljuqs; Abū cAlı̄

Ibn Sinā; and Nası̄r al-Dı̄n al-Tūsi. Among the others were Abu ’l-cAbbās al-Farghānı̄,
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al-Hāzim, al-Karajı̄, Qutb al-Dı̄n al-Shirāzı̄, al-Kāshı̄, Kamāl al-Dı̄n al-Fārsı̄ and Abū Sāqr

al-Qabı̄sı̄.

MUHAMMAD B. MŪSĀ AL-KHWĀRAZMĪ

It is Muhammad b. Mūsā al-Khwārazmı̄ (fl. first half of ninth century) who is credited, in

his treatise al-Mukhtasar fı̄ hisāb al-jabr wa ’l-muqābala [The Condensed Book on Calcu-

lations Involving Restoration and Confrontation], with the creation of algebra as we know

it in the modern sense.1 A frequenter of the Bayt al-Hikma established by al-Ma’mūn,

he composed the oldest astronomical tables and the oldest astronomical work, which was

translated into Latin in medieval Europe. His work focused on lunar anomalies, eclipses,

parallaxes, the inclination of the elliptic length of the tropic and on the sidereal year. He

was the first scholar in history to discard the idea of the classical conception of the static

universe and he strongly upheld the idea of a dynamic universe.

ABU ’L-cABBĀS AL-FARGHĀNĪ

Abu ’l-cAbbās al-Farghānı̄ (d. 860), known as Alfraganus in the West, supervised the erec-

tion of a Nilometer at al-Fustāt in Egypt and measured the diameter of the earth and other

planets. He also accurately calculated the distances between the planets. His jawāmiccilm

al-nujūm [Compendium of astronomy] was highly valued and remained in use throughout

Europe for several centuries, most of his works being transmitted to Europe through Latin

and Hebrew.

ABU ’L-WAFĀ’ AL-BŪZĀJANĪ

It was Abu ’l-Wafā’ Muhammad al-Būzajānı̄ (940–98), from Khurasan, who gave the world

the first known tables of tangents calculated for every 15’. He was the first to show the

generality of the sine theorem relative to triangles. He and other mathematicians formulated

and successfully developed a branch of geometry which dealt with problems leading to

algebraic equations of the third and higher degrees. This correlation of geometry with

algebra, and the geometric method of solving algebraic equations, anticipated Descartes’

discovery of analytical geometry in the seventeenth century (see further, Part Two below).

ABŪ RAYHĀN AL-BĪRŪNĪ

The Khwarazmian Abū Rayhān Muhammad al-Birūnı̄ (973–1048) introduced the idea of

a ‘function’ which describes the correspondence of two numbers and the dependence of

1 Al-Khwārazmı̄, 1939.
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one number on the other, a concept which has become one of the most important ideas

in mathematics. He made an accurate determination of specific gravities. In his al-Qānūn

al-Mascūdı̄ [Canon of (Sultan) Mascūd], he discussed for the first time the question of

whether the earth rotates around its axis and gave the true explanation that the rising and

setting of the heavenly bodies is a result of the rotation of the earth; he thus pointed to the

error in the geocentric conception of the solar system.

ABŪ cALĪ IBN SĪNĀ

Abū cAlı̄ Ibn Sı̄nā (c. 980–1037), known to the West as Avicenna, was not only a great

physician, a philosopher and a philologist, but also a mathematician. He devoted four books

of his Kitāb al-Shifā’ [Book of Healing] to the mathematical sciences, thus confirming the

mathematical orientation that had characterized Hellenistic-Islamic philosophy from its

beginning. Unlike his predecessors, al-Kı̄ndı̄ and al-Farābı̄, Ibn Sı̄nā no longer conceived

of mathematics as an activity in some way isolated from philosophy but rather as an integral

part of a philosophical synthesis. He renounced the traditional language of arithmetic and

took up that of the algebraists to explain the successive powers of an integer. He took up

the theorem of Thābit b. Qūrrā on amicable numbers and several problems on congruences.

In his Shifā’ he gave the example of the first case of Fermat’s conjecture, also treated by

at least two other mathematicians of the tenth century, al-Khujandı̄ and al-Khāzin. Ibn

Sı̄nā also wrote on whole or fractional, rational or algebraic irrational numbers. He gave

a system of classification of arithmetic, hisāb (calculation) and algebra different from the

Graeco-Hellenistic one. He threw new light on ontology and on logic, considering the

latter as the science of truth concerning the studies of propositional forms and the process

of reasoning. He brought a significant improvement to all parts of Aristotle’s logic, and

distinguished between conjunctive-conditionals and disjunctive-conditionals. He made a

great contribution to the theory of propositions. The legacy of Ibn Sı̄nā is considerable.

The Persian scholar Sacı̄d Nafisı̄ calculated that he wrote 456 works in Arabic and 23 in

Persian, but those genuinely attributable to him must be less.2 According to the library

catalogues of different countries, 160 of his works are preserved today.

cUMAR KHAYYĀM

In the Seljuq period, cUmar (or Omar) Khayyām of Nishapur (c. 1048–1123) and cAbd al-

Rahmān al-Khāinı̄ were the leading scientists who conducted astronomical observations.

Their works resulted in the adaptation of a new era, known as the jalālı̄ era. So perfect was

2 Asimov, 1986, pp. 220–43.
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this work that there is an error of only one day in 5,000 years. cUmar Khayyām was at the

same time a great mathematician and a distinguished philosopher and astronomer; whilst

a philosopher, he was a follower of Ibn Sı̄nā, whom he interpreted with keen rationalism.

His Algebra contains equations of the third degree. Like his Arab predecessors, he provided

both arithmetic and geometric solutions for quadratic equations. For cubic equations, he

was the first to classify them systematically and to obtain a root as the abscissa of a point of

intersection of a circle and a rectangular parabola, or of two rectangular hyperbolas. He was

also the first to solve geometrically every type of cubic equation that possesses a positive

root, and was aware of the trend of finding algebraic solutions of the cubic equation, whose

solution in its generality was found only in the sixteenth century.
cUmar Khayyām seems actually to have studied numerical solutions, specifically of

equations of the form xn = a, (where n is a positive integer). The case for n = 2 was also

known to Euclid, but any evidence of the generalization of the law for other values ofn

first appears, it would seem, in cUmar Khayyām’s Algebra. He did not give the law, but he

asserted that he could find the 4th, 5th, 6th and higher roots of numbers by a law which

he had discovered and which did not depend upon geometric figures and that he had set

this forth in another work, now lost. Furthermore, he was the first to mention the later

Italian mathematician Cardano’s 13 forms of the cubic which have positive roots. He was

the originator of some of the basic ideas underlying what is now known as non-Euclidian

theory of parallel lines, at least so far as it antedates the work of Girolamo Saccheri, and

his suggested theorems and proofs of Euclid’s fifth postulate are essentially the same as the

first few of Saccheri’s (see further in Part Two below).

NASĪR AL-DĪN AL-TŪSĪ

Nası̄r al-Dı̄n al-Tūsı̄ (d. 1274), much influenced by cUmar Khayyām’s work, continued

efforts to prove the parallel postulate. His writings influenced Saccheri’s work on non-

Euclidean geometry, Euclides ab omni naevo rindicatus (1733), which is generallycon-

sidered as the first step in a non-Euclidean geometry. Al-Tūsı̄’s views also influenced John

Wallis (seventeenth century), who translated his works into Latin, published them and used

them in his famous Geometrical Lectures at Oxford.

AHMAD AL-ŪQLĪDISĪ AND JAMSHĪD AL-KĀSHĪ

The Muslims also made an important contribution to the history of decimal fractions.

The first writer known to have used decimal fractions was the Syrian Ahmad b. Ibrāhim
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al-Ūqlı̄disı̄ (fl. mid-tenth century).3 All that is known about the author is his Kitāb al-Fusūl

fi ’l-hisāb al-hindı̄ [Book of Chapters on the Indian Numerals], in which he uses decimal

fractions, appreciates the importance of a decimal sign, and suggests one, that is, the point

/./. The next writer known to have used decimal fractions was the Khurasanian al-Nasāwı̄,

who flourished in the first half of the eleventh century. (On the continued use of the sexa-

gesimal system, see Part Two, below.)

In Mongol times the intellectual life of Central Asia and eastern Persia suffered a regres-

sion. There was, however, a fresh spurt of intellectual activity under the Timurids, who

were in power from about the middle of the fourteenth century until the beginning of the

sixteenth century. It was during the reign of Timur’s grandson Ulugh Beg (1394–1449)

that the study of astronomy especially reached new heights at Samarkand and that the

noted Persian mathematician Jamshı̄d b. Mascūd al-Kāshı̄ (d. 1429) flourished under his

patronage. Ulugh Beg founded in his capital an imposing observatory, which made this

ancient Central Asian city a noted centre for astronomy. He was also an astronomer in his

own right, being one of the first to advocate and build permanently mounted astronomical

instruments. His catalogue of 1,018 stars, written in 1437, was the only such undertak-

ing carried out between the time of Claudius Ptolemy (fl. mid-second century) and Tycho

Brahé (d. 1601).4 In this new catalogue, the positions were given to the nearest minute of

arc, and attained a high degree of precision for the period.

Jamshı̄d al-Kāshı̄ wrote at Samarkand his Miftāh al-hisāb [The Key to Arithmetic], a

comprehensive, clearly written and well-arranged handbook for merchants, clerks, survey-

ors and theoretical astronomers which is also an important work in the history ofnumbers,

especially for its full and systematic investigation of decimal fractions. Al-Kāshı̄ built up

the scale of decimal fractions by analogy with that of the sexagesimals. He realized the

importance of these fractions more than his predecessor the Syrian al-Ūqlı̄disı̄ had done,

claiming them as his own invention and giving them a special name, al-kusūral-acshāriyya.

Muslim mathematicians, who had been using sexagesimals in their large-scale computa-

tions, began to use decimals after al-Kāshı̄’s time. Through the use of decimals, al-Kāshı̄’s

approximation of π was more accurate than any of the values given by his predecessors.

He was also the first to solve the binomial later known as Newton’s, with its solution in

this same treatise on arithmetic, and he further wrote al-Risāla al-muhı̄tiyya [The All-

Embracing Treatise on the Circumference], based on the sexagesimal system.

Nevertheless, the Central Asian cities never quite regained their pre-Mongol intellectual

activity and excellence. This is related to the decline of the Muslims as a whole in scientific

3 Saidan, 1966, p. 475.
4 Krisciunas, 1992, pp. 3–6.
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intellectual development. One factor was the decline of curiosity on the part of individuals,

and here the victory of the Ashcarites may have had serious consequences for Muslim

civilization since it led to the development of taqlı̄d (the unthinking acceptance of tradition

in religion and other spheres), which was the antithesis of ijtihād (the exertion of effort in

resolving religious and legal problems), a process which now became regarded as closed.

Hence learned scholars were gradually forced to concede that it was no longer allowed for

anyone to exercise independent reasoning in matters of religion.

Part Two

THE MATHEMATICAL SCIENCES

(J. L Berggren)

Mathematics in medieval Islam was international in its scope and in its intended audience.

Its mathematicians drew on sources that ranged widely in time and space, and both east-

ern and western parts of the medieval Islamic world made important contributions to the

various divisions of the mathematical sciences. Thus this brief history will of necessity

trespass into other regions in its account of the conditions, consequences and achievements

of Central Asian mathematics.

Arithmetic

The earliest treatise on arithmetic known to us from the Islamic world is that of Abū Jacfar

Muhammad b. Mūsā al-Khwārazmı̄. He worked in Baghdad in the first half of the ninth

century, but his ethnic name Khwārazmı̄ points to at least his ancestors’ origin in the region

between the lower courses of the Amu Darya (Oxus) and Syr Darya (Jaxartes) rivers. His

work is only extant in a Latin translation from the twelfth century,5 and, indeed, it was

the earliest Arabic arithmetic to appear in Latin. Because the work introduced the Hindu

5 See Sezgin, 1974, p. 238; one suggestion has been that it was called the Kitāb al-Jamc wa ’l-tafrı̄qbi-
hisāb al-Hind [Book of Addition and Substraction According to the Hindu System of Calculation]. Until
recently our knowledge of this treatise has been confined to one manuscript, in Cambridge, United Kingdom,
but now a second manuscript has been found in New York, one which differs from that in Cambridge in
several ways.
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decimal positional system to both the Islamic and Latin worlds, it has, as A. Yuschkevitch

observes, ‘not only for mathematics, but for the whole cultural development of the world . . .

a great significance’.6 And, via its Latin offspring, al-Khwārazmı̄’s work has left a lasting

impression on those Western languages in which the word for any systematic method of

computing (as in the English ‘algorithm’) is derived from the Latin form of al-Khwārazmı̄’s

name, ‘algorismi’.

The importance of al-Khwārazmı̄’s book lies in its being the first of a series of works

developing the base ten positional system which the Islamic world had inherited from the

Indians. The end product of the tradition that al-Khwārazmı̄’s work originated may be seen

in the work of Jamshı̄d al-Kāshı̄ (see Part One, above), whose Miftāh al-hisāb [The Key

to Arithmetic] treats of arithmetic, algebra and mensuration, and gives instruction on the

extraction of roots of arbitrary orders, the use of the table of binomial coefficients7 (known

today as Pascal’s triangle) and decimal fractions.

All of these developments, however, took place after al-Khwārazmı̄. Thus decimal frac-

tions appear in the first extant work of Arabic arithmetic, that of al-Ūqlı̄disı̄ in the tenth

century (see Part One, above), and in the work of al-Samaw’al b. Yahyā in the twelfth

century. But it is not known what any of these writers owed to the other, and al-Kāshı̄’s

claim to have invented decimal fractions must be taken as representing his honest belief.

Perhaps8 al-Kāshı̄’s familiarity with the Chinese astronomers’ system of measuring time in

days and ten-thousandths of a day (called fên) inspired his invention of decimal fractions,

which he used, among other purposes, for displaying the results of his calculation of π to

16 decimal places.9

Al-Kāshı̄’s Miftāh was held in such high regard that the Persian scholar Muhammad

Tāhir Tabrisı̄ informs us that for two centuries after its composition it remained the standard

arithmetic text in Persian madrasas (colleges for higher religious studies). And in a preface

to his astronomical tables, written some eight years after al-Kāshı̄’s death, Ulugh Beg, to

whom al-Kāshı̄ dedicated this work, refers to him as ‘the admirable master, known among

the famous of this world, who had mastered and completed the sciences of the ancients and

who could solve the most difficult questions’.

However, the works both of al-Khwārazmı̄ and of al-Kāshı̄ illustrate the fact that by no

means all arithmetic in the Islamic world was based on the decimal system, for both also

treat the sexagesimal system, a positional system based on 60 rather than 10. And although

6 Yuschkevitch (quoted in Sezgin, 1974, p. 238).
7 It appears that this was first discovered by al-Karajı̄, c. a.d. 1000.
8 See Kennedy, 1964.
9 What was remarkable was not only the number of places but the fact that al-Kāshı̄ was able to control

the round-off errors in the calculation so that he knew the accuracy of the results of his calculations.
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decimal fractions were an Islamic contribution, sexagesimal fractions had been used since

at least the second millennium b.c. Knowledge of the sexagesimal system may have come

to medieval Islam through Greek or Sanskrit astronomical works,10 and a standard name

for the system in the Islamic world was ‘the astronomers’ arithmetic’.11 A systematicp-

resentation of the system is found in one section of the Usūl hisāb al-Hind [Principles

of Hindu Reckoning] by Kūshyār b. Labbān al-Jı̄lı̄ (fl. second half of tenth century).12

However, despite the existence of sexagesimal multiplication tables,13 multiplication and

division in the sexagesimal system were often accomplished by converting the numbers to

a decimal representation, performing the operations there, and then converting the answers

back to the base 60, a procedure referred to as ‘levelling’.

The use of the base 60 for dealing with fractions, found in the Islamic world as early

as al-Khwārazmı̄, also occurs in the work of Abu ’l-Wafā’ al-Būzajānı̄. In his Kitābal-

Manāzil fı̄mā yahtāju ilayhi al-kuttāb wa ’l-cummāl min cilm al-hisāb [Book of the Stages

Concerning What Secretaries and Financial Officials Need in the Way of Arithmetic], Abu

’l-Wafā’ tells how to use the base 60 to deal with fractions. It has in fact survived until today

in our writing that a certain angle is, e.g., 127 ◦30 ′41′′,14 According to A. S. Saidan, the

base 60 served in commercial computations much the same purpose as our percentages.15

With al-Būzajānı̄’s work we come to the third major system of arithmetic in the Islamic

world, that of finger reckoning. In medieval Islam this was also known as the ‘system

of the Arabs and the Byzantines’. However that may be, the Roman biographer Plutarch

(46–127) reports that a system of finger reckoning was known to the Persians, and the

fourteenth-century Persian historian and geographer Hamdallāh Mustawfı̄ credits Ibn Sı̄nā

with the invention of a system of calculation by this method. These data suggest that this

system had many variants, but the general principle of all variants was that the numerals

were represented by bending the fingers into certain standard positions in order to retain

the results of intermediate stages in mental calculations. Unlike the Hindu system, whose

operations were performed with a finger or stylus on a dust board or (later) on paper with

10 The system was widely used in Greek astronomical texts known in the Islamic cultural
domains, but al-Khwārazmı̄ in his Usūl hisāb al-Hind attributes it to the Hindus.

11 It is so described in the Miftāh of al-Kāshı̄, who devotes Maqāla III of that work to the topic.
12 The circulation of texts and ideas around Asia is illustrated by the fact that his zı̄j (astronomical hand-

book), the Madkhal ilā cilm al-nujūm, extant in both Arabic and Persian, was early translated into Chinese.
13 Referred to, but not present, in Kūshyār’s work. See also King, 1974a; 1974b; 1979.
14 A similar use of sexagesimals for representing fractions is found in the portion of Kūshyār’s work dealing

with decimal arithmetic.
15 Saidan, 1974, pp. 364–75.
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a pen, the fact that operations in the system of finger arithmetic were performed mentally

led to considerable attention being paid to computational short cuts.16

Al-Būzajānı̄ may have addressed his work to secretaries and financial officials, but com-

putation was also used by scientists,17 and noteworthy examples of scientific computing are

the sophisticated algorithms for solving equations or for computing corrections to a quan-

tity which is initially only calculated very roughly. Two examples of the former associated

with Central Asian mathematicians are the method of Habash al-Hāsib for the iterative

solution of t = θ − m˙sin θ for θ= θ (t), an equation known today as Kepler’s equation,18

and al-Kāshı̄’s iterative method for solving cubic equations arising from the problem of

trisecting angles.19 An example of the latter is the method of calculating the moment of

true conjunction of the sun and moon, starting with a mean conjunction of these two lumi-

naries. E. S. Kennedy describes such a method used in the Chinese-Uighur calendar and

found in the Zı̄j-i Khāqānı̄ [Royal Astronomical Tables] of al-Kāshı̄.20

A notable development of the iterative techniques for solving equations is found in the

works of Sharaf al-Dı̄n al-Tūsı̄ (d. c. 1213), whose On Equations gives not only methods

based on numerical tableaux for solving cubic equations, but also arguments for the validity

of these methods.21 Al-Tūsı̄’s mastery of both ancient mathematics and that of his own time

allowed him to derive conditions for the solvability of cubic equations which we would

most naturally verify today by means of the differential calculus but for which he probably

used a sophisticated mastery of Euclidean geometric algebra.22

Of course, by ‘ arithmetic’ the Greeks meant the theory of numbers, something theAr-

abic writers called either ‘the science of numbers’ (a direct translation of the Greek) or

(e.g. al-Fārābı̄) ‘the theoretical science of numbers’. The Islamic tradition in this area23

was based on the number-theoretic books of Euclid’s Elements (Books VII–IX) and that

treasury of Pythagorean number lore, Nicomachus’ Introduction to Arithmetic, one of the

earliest Islamic contributions to number theory was to a favourite topic of Nicomachus.

This was Thābit b. Qurra’s discovery, in the late ninth century, of a condition for each

of two numbers to be the sum of the proper divisors of the other.24 Although Thābit’s

16 See, for example, Saidan, 1974, p. 372.
17 Abu ’l-Wafā’ for example, was an astronomer, and suggested taking the radius in computing the Sine

function equal to 1.
18 See Kennedy et al., 1983, pp. 513–16.
19 See Aaboe, 1954, pp. 24–9.
20 Kennedy, 1964, pp. 435–43.
21 See Rashed, 1985.
22 See Hogendijk, 1989, pp. 69–85; Berggren, 1990, pp. 304–9.
23 See the survey of Islamic work in number theory in Naini, 1982.
24 A pair of such numbers, e.g. 284 and 220, the Greeks called ‘amicable’.
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theorem was not easy to apply, Kamāl al-Dı̄n al-Fārisı̄ in the thirteenth century was able

to find a new pair of amicable numbers (17,296 and 18,416), a pair rediscovered by Pierre

de Fermat in the seventeenth century. Al-Fārisı̄’s work was conducted in the context of a

systematic study of the sum of divisors of a number.

At the same time, there was a strong tradition of Diophantine analysis, carried on both in

algebra and in number-theoretical investigations of questions which would arise on reading

Diophantus’ Arithmetics. An example of this latter is the proof of Abū Jacfar al-Khāzinal-

Khūrasānı̄ (d. c. 965) that, given a whole number a, the equations x2 + a = m2 andx2
− a

= n2 are simultaneously solvable for whole numbers x, m and n if and only if a is twice the

product of two whole numbers whose squares add up to a square. In such a case we may

take x2 to be that square. According to him, Abū Mahmūd Khujandı̄ (from Khujand, in

Transoxania) gave an incorrect proof of the impossibility of solving the first case of what

was to become Fermat’s conjecture: for n > 2 there are no whole-number solutions to xn

+ yn = zn, by no means the last incorrect proof associated with Fermat’s conjecture! In the

twelfth century Ibn al-Khawwām stated the same for the next case, namely x4 + y4 = z4,but

neither he nor his commentator Kamāl al-Dı̄n al-Fārisı̄ proved it.

Finally, on the subject of arithmetic, one measure of the progress made in the conception

of numbers which occurred from the ninth century onwards is the arithmetic treatment of

Euclid’s Book X, a work devoted to a classification of quadratic irrationals considered

as geometric magnitudes. Beginning with Abū cAbdallāh Muhammad al-Māhānı̄ (fl. mid-

ninth century), one finds developing an Islamic tradition of treating irrational magnitudes as

irrational numbers. This arithmetic treatment of Book X leads to the point where ‘Euclid’s

propositions are directly given as collected rules of operations on number irrationalities.’25

(For the development of the idea of ratio as being a number, see the remarks on cUmar

Khayyām below)

Algebra

Algebra was closely connected with arithmetic in the Islamic world, for as A. I. Sabra26

has pointed out, both were studies whose object was to compute from one or more given

numbers an unknown number (whether it be the sum or product of two given numbers or

the root of a quadratic equation with given coefficients). Indeed, many of the arithmetic

books contained chapters on algebra and many of the works on algebra had the word hisāb

(calculation) in their titles. Moreover, as with arithmetic, algebra was another ancient area

25 Matvievskaya, 1987, p. 272.
26 Sabra, 1971.
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of endeavour which Islamic mathematicians systematized. Finally, as with arithmetic, the

first known books in algebra stem from writers connected with Central Asia.

One of these writers we have already met: Muhammad b. Mūsā al-Khwārazmı̄, who

dedicated his Algebra to the caliph al-Ma’mūn.27 The first part of this tripartite work is

a basic introduction to the algebra of equations of at most the second degree. The author

prescribes the procedures for solving each of the six types into which he classifies such

equations, presents examples, and gives demonstrations of the validity of the methods.

In these demonstrations he uses informal geometric arguments which are ultimately of

Babylonian origin.28 The Algebra was twice translated into Latin in the twelfth century, by

Robert of Chester and then by Gerard of Cremona, and in that form made a great impact on

the West.29 Another early writer on algebra was cAbd al-Hamı̄d Ibn Turk, whose origins

lay either in Khuttal or in Gilan and who was apparently a contemporary of al-Khwārazmı̄.

His book al-Darūrāt fi ’l-muqtaranāt [The Logical Necessities of Mixed Equations] is

extant only in part.30 That it is not possible to assign priority to one or the other does not

matter very much, if one accepts E Sezgin’s quite reasonable view that both works reflect

activity that was already going on when their authors entered the scene.31

Following upon these two writers, Abū Kāmil Shujāc b. Aslam of Egypt (fl. second half

of ninth century), in his Kitāb fi ’l-Jabr wa ’l-muqābala [Book on Algebra], extended the

algorithms which al-Khwārazmı̄ and Ibn Turk had stated for operating with polynomials to

powers as high as the eighth, and developed the arithmetic of binomial expressions, which

Euclid had treated geometrically in Book X of his Elements. About a century later, Abū

Bakr al-Karajı̄ (fl. c. 1000), in his al-Fakhrı̄ [The Splendid (Book)], became the first person

to state general rules allowing the user to operate with polynomials of arbitrary degree.

However, since he had no algebraic symbolism, al-Karajı̄ relied on rules for manipulating

coefficients of polynomials arranged in the columns of a table. With this technique he was

able, for example, not only to multiply but, in some cases, to divide such polynomials as

well. It appears however that, not knowing the rule −a − (−b) = − (a − b), he was unable

to master all cases of division of polynomials, and we first find this done successfully in the

writings of al-Samaw’al b. Yahyā, a Jewish convert to Islam who died in 1174 at Maragha

in Azerbaijan. He did systematic work with decimal fractions in problems dealing with

27 The full title is al-Mukhtasar fı̄ hisāb al-jabr wa ’l-muqābala (see Part One above). Text and translation
in Rosen, 1831.

28 Gandz, 1936, pp. 523–4; Høyrup, 1986, pp. 445–84.
29 Toomer, 1973, p. 362, calls it ‘the chief influence on medieval European algebra’.
30 Sezgin, 1974, p. 241; Sayili, 1962, pp. 87–91, who has published the extant part, points out

that the date of Ibn Turk can be approximated only from the date of death, 910, of a man
thought to be his grandson.

31 Sezgin, 1974, p. 241.
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root extraction and the approximation of roots of polynomials. Here one should highlight

his statement, in his work, al-Tabsira fı̄ cilm al-hisāb [The Perspicacious (Book) onAr-

ithmetic], both of the intricate cases of the law of signs and of the general law of integer

exponents, aman = am+n, valid for negative integers m and n as well as positive.

Moreover, al-Samaw’al was able to generalize algorithms for extracting square roots of

ordinary whole numbers to rules for square roots of polynomials as well. In accomplish-

ing these tasks, he not only shows his awareness of the potentially infinite nature of the

processes (by referring to a finite part of the answer as ‘the answer obtained so far’) but

also gives a recursive rule for writing down the coefficients of all the remaining powers.

A different approach to algebraic problems is that of cUmar Khayyām. In his Maqāla

fi ’l-jabr wa ’l-muqābala [Discourse on Algebra], which he dedicated to Abū Tāhir, the

chief qādı̄ (judge) of Samarkand, cUmar Khayyām classifies the polynomial equations in a

single variable of degree at most 3 according to the number of terms involved and then dis-

cusses each case where there is a positive real solution. His book follows the Central Asian

tradition set by al-Khwārazmı̄ of being entirely rhetorical, lacking the algebraic symbol-

ism which developed in the Muslim West. cUmar Khayyām, moreover, avoids subtracted

quantities in his classification of different types of equations, so that in the end he has 25

species of equations. His methods of solution, as he says in the preface to his work, use

Euclid’s Elements and Data and Apollonius’ Conics. Terms such as x3 or ax2 he interprets

geometrically as volumes, and his solutions are represented as line segments.

However, in cUmar Khayyām’s view the fact that his approach is geometric does not

mean his work is not algebra. Indeed, he says in the introduction that, ‘One of the branches

of knowledge . . . is the science of algebra, which aims at the determination of numerical

and geometrical unknowns.’ The important criterion was evidently that one was searching

for an unknown quantity, and that in doing so one was using rules and procedures which

had been used by algebraists from the time of al-Khwārazmı̄ and Ibn Turk. The fact that

the quantity one was searching for was a geometric magnitude and that one also used

some theorems of geometry in no way made the work less algebraic. Thus algebra was

a branch of mathematics with very wide applications. On the one hand, it could contain

many elements, and solve many problems, which we would think of as geometric. On the

other, it was also considered a fundamental part of hisāh, the science of finding unknown

quantities from known quantities.32

In his study of cubic equations, cUmar Khayyām was aware that he was building on

work of al-Khāzin. Earlier, al-Māhānı̄ had shown that Archimedes’ problem of dividing a

32 For example, al-Kāshı̄ in his Miftāh devotes Maqāla V to the subject of ‘finding unknowns
by algebra and the rule of double false position and other methods of calculation’.
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sphere could be stated in terms of a cubic equation, and cUmar Khayyām informs us that

Abū Jacfar wrote a treatise containing the solution by intersecting conies.

Trigonometry

One of the chief contributions of Islamic mathematics was the development of plane and

spherical trigonometry.33 Although mathematicians from many parts of the Islamic world

contributed to this endeavour, some of the most important applications were made by the

mathematicians of Central Asia in the context of astronomical research. One of the most

eminent of the early practitioners of mathematical astronomy was Habash al-Hāsib, origi-

nally of Merv but largely resident in Baghdad (fl. ninth century), who, as far as we know,

was the first to calculate tables of auxiliary functions. These are combinations of trigono-

metric functions which are of little interest in themselves but which often appear in for-

mulae of spherical astronomy, such as those in astronomical timekeeping.34 They are thus

of great service in computing astronomical tables. Perceiving the utility of such aids testi-

fies to Habash’s insight into the structure of a variety of seemingly different mathematical

expressions.

Astronomer-mathematicians in the Islamic world spent considerable time improving the

tables of the trigonometric functions that they had inherited from the Hindus. The climax

of this development was the work of Ulugh Beg (see Part One, above), who composedc.

1440 his sine tables for each minute of arc to 5 sexagesimal places, an accuracy of almost 1

part in 1,000 million. This accuracy was, of course, based on the iterative method al-Kāshı̄

used for computing Sin (1 ◦) from the value of Sin (3 ◦), which we mentioned above.

It appears that the development of spherical trigonometry took place during the latter

half of the tenth century. The results of this work, as well as something of its history, are

recounted by al-Birūnı̄ in his Kitāb Maqālı̄d cilm al-hay’a [Book of the Keys to Astron-

omy], which he evidently wrote at the request of the Khwarazmian ruler Abū Nasr b. clrāq.

From this account, it appears that al-Būzajānı̄ played a major role in the history of spherical

trigonometry, for he explained the ubiquitous Rule of Four Quantities, the Law of Sines

and the Law of Tangents.35 It was Nası̄r al-Dı̄n al-Tūsı̄ who, at Maragha in the thirteenth

century, completed and summarized trigonometry in his Kitāb al-Shakl al-qattāc [Book on

33 The latter is the trigonometry of triangles on the surface of a sphere whose sides are arcs of great circles
on that sphere.

34 For a survey of medieval literature on this topic, see King, 1990, pp. 27–32.
35 See Debarnot, 1985, for the full text and French translation. An abridged account of this very interesting

story may be found in Berggren, 1987, pp. 16–17.
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the Complete Quadrilateral]. It is this work which marked the emergence of trigonometry

as a discipline independent of astronomy, to which it had been linked for so long.36

A point which should be mentioned here, and which also applies to the subjects dis-

cussed earlier, is that each of these mathematical sciences acquired Islamic dimensions as

its practitioners became aware that their disciplines could be used to provide exact solutions

to problems unique to Islamic societies. In the case of arithmetic, such problems include

the calculation of zakāt (alms-tax), as well as the seemingly endless calculations necessary

to obtain tables of the times and direction of prayer. In the case of algebra, as we find from

al-Khwārazmı̄’s work, it includes the division of legacies (the so-called cilm al-farā’id, or

science of obligatory shares). In the case of geometry, it was the application of that subject

to the measurement of surfaces and volumes arising from the features of many mosques.37

Trigonometry found several areas of application, one of these being the determination

of the direction of prayer, i.e. the determination of the direction of Mecca (the qibla), for

a given locality. One of the masters of the application of spherical trigonometry to the

basic problems of mathematical geography, which would permit the solution of the qibla

problem, was al-Bı̄rūnı̄.38 Suffice it to mention here that the goal of this work was to put

Ghazna (in what is now eastern Afghanistan) ‘on the map’ by determining its latitude and

longitude and from them its qibla. The sophistication of this tradition of determining the

qibla is indicated by the recent appearance, on the modern antiquities market, of a device

consisting of a circular disk on which is a co-ordinate net so devised that, when a ruler is

rotated around the centre to pass through the cell bearing the name of some city, the end of

the ruler indicates on the scale of the outer rim the qibla of that city. The scale on the ruler

shows the distance between Mecca and that city. Although this particular device was made

in Isfahan c. 1700, there is every reason to believe that it reflects a medieval tradition.

Geometry

Following the translation of many of the major and minor works of the Greek geometers

into Arabic, the geometers of medieval Islam, and of Central Asia in particular, extended

the frontiers of geometric research and opened up whole new areas as well.

Unlike other branches of the mathematical sciences, geometry had come to Islam with

a logical structure, based on definitions, axioms and postulates. This situation, not

36 A similar development did not take place in the West until Regiomontanus completed his De triangulis
omnimodibus in 1464.

37 See Dold-Samplonius, 1992, pp. 193–242.
38 Details can be found in his Tahdı̄d nihāyāt al-amākin [Determination of the Co-ordinates of Localities].

See Kennedy, 1973; Ali, 1967.
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surprisingly, attracted the attention of the geometers of the Islamic world to foundation-

alquestions in the subject. A prominent example of this is research into the question of

Postulate 5 of Book I of Euclid’s Elements, the so-called parallel postulate. Since this

work has been well investigated by B. A. Rosenfeld, and the Arabic texts have been made

available by K. Jaouiche, we shall merely state here that the tradition of the quadrilateral

with two right angles, found in the works of cUmar Khayyām and then in Nası̄r al-Dı̄n al-

Tūsı̄, became known in Europe through the pseudo-al-Tūsı̄ recension of Euclid’s Elements

which was printed in Arabic in Rome.39

Another basic question in geometry was, as already indicated, that of the foundations of

the theory of proportion, i.e. of when two ratios should be regarded as being the same.40 As

in so many other areas, a major contribution to the question was made by cUmar Khayyām,

who argued in his work on the difficulties in Euclid41 that Definition 5 of Elements V hid

the true nature of proportion and should be replaced by one based on the idea of anthy-

phairesis. This procedure, based on successive subtraction, is hinted at in Aristotle, and

is used in the Euclidean algorithm (Elements VII.2) to find the greatest common divisor

of two whole numbers. cUmar Khayyām not only proved the equivalence of the two def-

initions of ratio, but also came to a general conception of real number in his notion that

any ratio could be treated as a kind of number even though, strictly speaking, it was not a

number.

By no means all geometric work was devoted to foundational questions, however. Par-

ticularly noteworthy are the geometers, many of Central Asian origin, who assembled at

the Buyid court of cAdud al-Dawla and his successors in southern Persia in the late tenth

century. Among them was Abū Sahl al-Kūhı̄ of Tabaristan (fl. second half of tenth century),

called ‘Master of His Age in the Art of Geometry’ by his two younger contemporaries, Abu

’l-Jūd and al-Shannı̄.42 Among al-Kūhı̄’s writings are works on the regular heptagon and

on duplicating the cube and trisecting the angle; correspondence about his remarkable new

discoveries in geometric mechanics;43 a study of geometric problems suggested by the

problem of constructing an astrolabe; and finding the volume of a paraboloid of revolu-

tion. For the astrolabe, he also invented a new method for solving the uniquely Islamic

problem of drawing the projection of the azimuth circles on that instrument.44 A col-

league of al-Kūhı̄’s was Abū Hamid Ahmad al-Saghānı̄ (called ‘The Astrolabist’; fl. tenth

39 According to one suggestion, it may be the son of al-Tūsı̄, namely Sadr al-Dı̄n, who composed this.
40 See Plooij, 1950.
41 See Amir-Moez, 1959, pp. 276–303.
42 Quoted in Hogendijk, 1985, p. 113.
43 Published in Berggren, 1983.
44 Published in Berggren, 1982.
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century), whose name indicates an origin on the upper Oxus. He was the author of a study

of projection of a sphere45 on to a plane perpendicular to its axis from a point on the axis

but not on the sphere, a generalization of stereographic projection which gave rise to a

variety of interesting mathematical problems and curious astrolabes. Both of the above

mathematicians participated in a lively controversy at the Buyid court on the following

questions: the admissibility of a construction of the regular heptagon in a circle thatAra-

bic sources attribute to Archimedes; and the validity of constructions proposed by various

tenth-century geometers.46 Of course, the whole debate took place within the context of

active work on the other famous problems of Greek antiquity, such as the trisection of the

angle and the duplication of the cube.

We must close with a mention of some of the applications of geometry that were realized

by the mathematicians of Central Asia. Pride of place in this group must go to al-Birūnı̄,

whose geometric methods in cartography, geodesy and astronomy still excite admiration.

We have already mentioned his Tahdı̄d nihāyāt al-amākin, where he solves the problems

of computing the longitude of Ghazna relative to Baghdad, and the distance between those

two cities and the qibla of Ghazna as well. In a much smaller treatise, the Kitāb fı̄ Tastı̄h

al-suwar wa-tabtı̄h al-kuwar [On The Projection of the Constellations and the Flattening

of the Sphere],47 he proposes an original mapping of a hemisphere which, when it was

reinvented by G. B. Nicolosi in 1660, became known as the globular projection. He also

describes a didactically interesting way of conceiving an earlier projection (known now

as the azimuthal equidistant projection), invented (according to one account) by Khālid

al-Marwarrūdhı̄.

Conclusions

Given the high level of Central Asian mathematics, it is unfortunate that European transla-

tors, who otherwise took so much from Arabic writings, knew so little of it. There are, of

course, exceptions, such as the works of al-Khwārazmı̄. But, in general, Europe was igno-

rant of the major Central Asian mathematical works – and their authors – in the centuries

when they could have had the most influence. Al-Birūnı̄, al-Kūhı̄, cUmar Khayyām – none

of them was known to European translators. One may easily suggest reasons why this was

the case. Geographic separation, the particulars of the development of mathematics in the

Muslim West (the primary site of transmission between Central Asia and Europe), the rel-

ative lateness of several of the major Central Asian writers and the interests and/or cultural

45 See Lorch, 1987.
46 See the review of this controversy in Hogendijk, 1984.
47 See Berggren, 1982
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level of the Latin translators: these are only a few of the reasons that come to mind as pos-

sible factors. One may debate their relative importance at some length, but what is beyond

debate is that in the period covered by this volume, Central Asian mathematicians produced

works which made their times one of the great ages of mathematical achievement.
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